Extract from pomegranate waste as an all alternative natural antioxidant in foods

K. Kaderides, I. Patsopoulou, L. Sorovakou, A.M. Goula

Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University, Thessaloniki, Greece

Pomegranate

Pomegranate is an ancient fruit originating from the Middle East and nowadays the global pomegranate production is around 2 million tons

2

The most important growing regions are:

China	Turkey
Iran	Spain
Egypt	U.S.A.

24% Peel 14% Seeds 62%

Cor Conte	nenol			
Component	Content (%)		↓	Content
Total solids	96.00		Phenolic compound	(mg/100 g
Moisture	4.00			dry matter)
Total sugars	31.38		Ellagic acid	44.19
Proteins	8.72		Catechin	868.40
Crude Fiber	21.06		Punicalagin	1667.00
Fat	9.40		Gallic acid	125.80
Ash	5.00		Protocatechol	4.17
Total	8.10	Aguilar et al., 2008; Ullah et al., 2012	Vanilline	3.91
phenolics	Antioxidant a	ttivity	Caffeic acid	60.46
	Anti-mutagen	ic activity	Ferulic acid	5.89
	Anti-hyperten	sion activity	p-coumaric acid	17.64
*	Anti-inflamma	atory activity	Others	8.20
*	Anti-atherosc	lerotic activity		

Rowayshed et al., 2013; Gullon et al., 2016

Exploitation of Pomegranate Peels 4 Pomegranat 100 kg e **Peels** Seeds 24 kg 14 kg Cosmetic Food Fodder Industry S Ice cream ≻Tea Divinum 8 COSMEDI Αιθέριο έλαιο Ρόδι Essential oil haven egrana

Pomegranate Peel

Proposed Process for Pomegranate Peels Application in Food Industry

5

Why Encapsulation of Phenolic Compounds

6

Increase of their stability during storage and passage through the gastrointestinal tract

Improvement of color

Masking of astringency

Suitability for use as an additive in functional foods

Fang & Bhandari, 2010

Encapsulation Methods

7

Method of encapsulation	Encapsulation efficiency	Reference
Extrusion	89.39%	Belščak-Cvitanovic et al., 2011
Rapid extraction of supercritical solution	79.78%	Santos et al., 2013
Formation of multiple emulsion using a rotating disk reactor	80.00%	Akhtar et al., 2014
Freeze drying	75.50% 97.22%	da Rosa et al., 2014 Saikia et al., 2015
Freeze drying liposomes	63.19%	Marin et al., 2018
Hot Air Drying Chamber Cyclone Separator	72.40% 99.80%	Bustamante et al., 2017 Kaderides et al., 2015
Moist Air Produc Discha	t	

Wall material characteristics 8

1	Good rheological properties at high concentration
2	Disperse or emulsify the active material and stabilize the emulsion produced
3	Chemical non reactivity with the active core materials
4	Seal and hold the active material within its structure during processing/storage
5	Provide maximum protection to the active material against environmental conditions
6	Acceptable solubility of the solvent to the food industry

Desai & Park, 2005

Wall Materials Used for Encapsulation of

he Rolie policis	Wall material	References
	Spray drying	
Pomegranate peel extract	Maltodextrin; Whey protein; Skim milk powder Maltodextrin Modified starch	Kaderides et al., 2015 Cam et al., 2014 Bustamante et al., 2017
Carrot extract	Maltodextrin	Ersus &Yurdagel, 2008
Grape juice	Maltodextrin; Soy protein; Whey protein	Moser et al., 2017
Olive leaf extract	Chitosan	Kosaraju et al., 2006
Barberry extract	Maltodextrin; Gum Arabic; Gelatin	Mahdavi et al., 2016
Mutle plant extract	Maltodextrin; Gum Arabic; Mesquite gum	Pavón-García et al., 2011
Soybean extract	Maltodextrin; Starch	Georgetti et al., 2008
Black currant extract	Maltodextrin; Inulin	Bakowska & Kolodziejczyk, 2011
Bilberry extract	Whey protein concentrate	Betz et al., 2012
Apple extract; Olive leaf extract	Sodium caseinate; Lecithin	Kosaraju et al., 2008
	Co-crystallization	
Yerba Mate extract	Calcium alginate	Deladino et al., 2008
Green tea EGCG extract	Gelatin	Shutava et al., 2009
Blackcurrant extract	Glucan	Xiong et al., 2006
	Freeze drying	
Cloudberry extract	Maltodextrin DE 5-8 & DE18,5	Laine et al., 2008
Grape pomace extract	Maltodextrin; Gum Arabic	Stoll et al., 2016
Blueberries extract	Maltodextrin	Celli et al., 2016
Hibiscus tea extract	Pullulan	Gradinaru et al., 2003

Production and Exploitation of Orange Fruit

Production of oranges in E.U.

Country	Tons (2013)
Spain	2.933.800
Italy	1.950.000
Greece	914.000
Portugal	206.300

No economic value

Incorporation of Pomegranate Peel Extract in					
Product	A Frööds	Reference 2			
En	capsulated pome	granate peel extract			
Hazelnut paste	Antioxidant	Kaderides et al., 2015			
Ice cream	Antioxidant	Cam et al., 2014			
	Pomegranate	e peel extract			
Shrimps	Antimicrobial	Basiri et al., 2015			
Meat pate	Antimicrobial	Hayrapetyan et al., 2012			
Curd	Antioxidant	Sandhya et al., 2018			
Pork meat	Antioxidant	Qin et al., 2013			
Beef meatballs	Antioxidant	Turgut et al., 2017			
Bread	Antioxidant	Paari et al., 2012; Altunkaya et al., 2013			
Sunflower oil	Antioxidant & Antimicrobial	lqbal et al., 2008; Kanatt et al., 2010			
Cooked chicken patties	Antioxidant & Antimicrobial	Naveena et al., 2008			

Objective

The exploitation of pomegranate and orange wastes based on:

Ultrasound-assisted extraction of phenolic compounds from pomegranate peel

Encapsulation of extract by spray drying using orange juice industry by-product as wall material Study of:

Incorporation of crude and encapsulated extract in foods:

- a. Fresh juice
- b. Sunflower oil
- c. Cookies

Pomegranate Peel Extract - Optimized Conditions of Ultrasound Assisted Extraction

- **1.Extraction temperature:** 35 °C
- **2.Solvent type:** *Water*
- **3.Solvent/Solid ratio:** 32/1
- 4.Amplitude level: 40% (50 W)
- 5. Pulse duration/Pulse interval ratio: 7/6
- 6.Extraction time: 10 min

130 W, 20 kHz VCX-130Sonics and Materials(Danbury, CT, USA) with Ti-Al-Kaderides et al., 2015V probe (13 mm)

Integrated Process for Encapsulation of Pomegranate Peel Extract in Orange Wastes Powder

Encapsulation of Pomegranate Peels Extract - Optimized Conditions of Spray Drying

- **1. Wall material:** Orange wastes
- **2.** Inlet air temperature: 162 °C
- 3. Feed solids concentration: 5 % w/w
- 4. Ratio of core to wall material: 1/9
- 5. Drying air flow rate: 17.5 m³/h
- 6. Flow rate of compressed air for atomization: 0.80 m³/h

1

- Concurrent
- Two fluid nozzle atomization
- Peristaltic pump for feed
- Buchi, B-191, Buchi Laboratoriums-Technik, Flawil, Switzerland

Incorporation of Phenolic Capsules in Foods

PRODUCT: •••

a. Fresh juice Shelf-life test at 4°C for 20 days b. Sunflower oil Shelf-life test at 60°C for 20 days c. Cookies Shelf-life test at 25°C for 21 davs

ADDITIVE: Phenolic extract (Crude and encapsulated)

3 samples were

- tsample with encapsulated extract
- Sample with crude extract
- Control sample

Measurement of:

- Antioxidant activity
- Total phenolics conten

Q

- Oxidation stability
- Color

Foods Composition Data

2

Shelf-life test at 25°C for 21 days

	Cookies	Cookies	0
Component	with crude	with encapsulate	Shelf-life test at 4°C for 20 days
	extract	d extract	Fresh juice
Phenolics co	ncentration: 5	000 ppm	
Flour	42.82 %	44.68 %	Phenolics concentration:
Butter	29.17 %	29.67 %	5000 ppm
Sugar	14.12 %	14.73 %	
Baking powder	1.39 %	1.36 %	Apple
Crude extract	12.75 %	-	Orango
Encapsulated		0 55 %	Urange
extract	-	9.00 /0	Carrot

Results

HPLC Analysis of Crude Extract

Determination of Punicalagin in Extract During Storage at 4 Accelerated Conditions

1400

1200

1000

600

400

Day 0

Antioxidant Activity of Isolated Phenolics Measured by DPPH Method^a

	antioxida	nt activity
compd	TEAC ^a	AEAC ^b
gallic acid	2.5	2.7
cyanidin 3 glucoside	0.8	0.8
ellagic acid	1.1	1.2
punicalagin	6.3	6.7

Antioxidant Activity of Individual Phenolic Groups in Commercial Single-Strength Pomegranate Juice Measured by the DPPH Method

TEAC

1.4

9.8

phenolic groups

anthocvanins

punicalagins

antioxidant activity

AEAC

1.4

10.5

Determination of Punicalagin in2 Extract During 5 Storage at Accelerated Conditions

2 **Pomegranate Peel Extract on Total Phenolics and Antioxidant Capacity of Fresh**

> Encapsulat extract ed extract

p-value=0.000

p-value=0.000

Effect of Pomegranate Peel Extract on Total Phenolic content of Cookies

Shelf-life test at 25°C for 21 days

2

8

Effect of Pomegranate Peel Extract on Antioxidant Capacity of Cookies

days

3 O Effect of Pomegranate Peel Extract on Color of Cookies

Effect of Pomegranate Peel Extract on Sensory Evaluation of Cookies

Triangle test

 $z - score = \frac{(P_{obs} - p) - 1/2n}{\sqrt{pq/n}} = \frac{(X - np) - 1/2}{\sqrt{npq}}$

where Pobs is the proportion correct (= X/n), X is the actual number correct, n is the number of judges, p is the chance probability, and q = 1–p.

	Cool	kies	Со	okies with	
Component	with c	rude	en	capsulated	
	extr	act		extract	
Phenolics co	oncenti	ration:	50	00 ppm	
Flour	42.8	2 %		44.68 %	
Butter	29.1	7 %		29.67 %	
Sugar	14.1	2 %		14.73 %	
Baking powder	1.39	9%		1.36 %	
Crude extract	12.75 %			-	
Encapsulate				0 55 %	
1	Bittern	iess			
		1 st Te	st	2 nd Test	
Cookies with crude extract		1		0	
Cookies with encapsulated ex	tract	9		10	

Solving for *X* as a function of *n* and using p = 1/9 and z = 1.645 (p < 0.05, one tailed) For **n** = **10** panelists, **X** = **3.246**. The value of X is round up to the next highest integer. Therefore, in the experiments conducted, it will be assumed that the samples have statistically significant difference, if **4** or more panelists responded correctly in both iterations.

Astringency					
	1 st Test	2 nd Test			
Cookies with crude extract	0	0			
Cookies with encapsulated extract	10	10			
	Overall acceptability				
Overall acce	ptability				
Overall acce	ptability 1 st Test	2 nd Test			
Overall acce Cookies with crude extract	1 st Test	2 nd Test 10			

Effect of Pomegranate Peel				Color		3	
Extract on Sensory Evaluation of Cookies			Cookies with crude extract	3	2		
	Cookie s with	Cookies with	Cookies with	Cookies with	9	Odor	
Συστατικό	crude	encapsulated extract	encapsulate d extract	extract		Cookies with crude extract	1
	extract					Cookies with	
Συγκέντρωση φαιλολικών 5000 ppm		Texture		encapsulated	11		
Flour	42.82 %	44.68/%	34.11 %	Cookies with crude extract	9		
Butter	29.17 %	29.67 %	22.66 %	Cookies with	2		
Sugar	14.12 %	14.78 %	18.75 %	encapsulated	3	Taste	
Baking	1.39 %	1/.36 %	1.04 %			Cookies with crude extract	7
Crude	12.75			Overall acceptabili	ty	Cookies with	5
extract	%			Cookies with	7	extract	J
Encapsulat	-	9.55 %	9.38 %	crude extract	/		
Water	-	/ - \	14.06 %	Cookies with encapsulated	5		
				extract			

Conclusions

3

3

An integrated approach for utilization of pomegranate peels is suggested based on the spray drying encapsulation of their phenolics compounds using an alternative wall material (orange wastes)

Pomegranate peel extract was found to be rich in punicalagin

The extract (crude and encapsulated) was found efficient in improving the shelf-life of sunflower oil, cookies and fresh juice

On sensory evaluation, about 70-90% of the panelists preferred cookies with encapsulated extract for their color and odor compared to cookies with uncoated extract, whereas 58% of the panelists preferred cookies with crude extract for taste and overall acceptability

3 4

Fibers Thank you!

Phenoli

CS

Acknowledgement

This work is supported by the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI)

